Skip to contents

Takes a data frame and produces grouped or un-grouped summaries such as mean and standard deviation for continuous variables.

Usage

continuous_table(
  df = .,
  ...,
  group = .,
  time = .,
  total = TRUE,
  digits = 2,
  condense = FALSE
)

Arguments

df

Data frame

...

Variables to be summarised

group

Optional variable that defines the grouping

time

Optional variable for repeated measures (currently must me used with group)

total

Logical indicating whether a total column should be created

digits

Number of digits to the right of the decimal point

condense

should the variable and scoring columns in the output be condensed to one column?

Value

A tibble data frame summarising the data

Examples

    continuous_table(df = iris, Petal.Length, Petal.Width, group = Species)
#> # A tibble: 9 × 6
#>   variable     scoring      Total             setosa        versicolor virginica
#>   <chr>        <chr>        <chr>             <chr>         <chr>      <chr>    
#> 1 NA           NA           N = 150           N = 50        N = 50     N = 50   
#> 2 Petal.Length n            150               50            50         50       
#> 3 Petal.Length Mean (SD)    3.76 (1.77)       1.46 (0.17)   4.26 (0.4… 5.55 (0.…
#> 4 Petal.Length Median (IQR) 4.35 (1.60, 5.10) 1.50 (1.40, … 4.35 (4.0… 5.55 (5.…
#> 5 Petal.Length Min, Max     1, 6.9            1, 1.9        3, 5.1     4.5, 6.9 
#> 6 Petal.Width  n            150               50            50         50       
#> 7 Petal.Width  Mean (SD)    1.20 (0.76)       0.25 (0.11)   1.33 (0.2… 2.03 (0.…
#> 8 Petal.Width  Median (IQR) 1.30 (0.30, 1.80) 0.20 (0.20, … 1.30 (1.2… 2.00 (1.…
#> 9 Petal.Width  Min, Max     0.1, 2.5          0.1, 0.6      1, 1.8     1.4, 2.5 
    continuous_table(df = iris, Sepal.Length, Sepal.Width, group = Species,
                     total = FALSE)
#> # A tibble: 9 × 5
#>   variable     scoring      setosa            versicolor        virginica       
#>   <chr>        <chr>        <chr>             <chr>             <chr>           
#> 1 NA           NA           N = 50            N = 50            N = 50          
#> 2 Sepal.Length n            50                50                50              
#> 3 Sepal.Length Mean (SD)    5.01 (0.35)       5.94 (0.52)       6.59 (0.64)     
#> 4 Sepal.Length Median (IQR) 5.00 (4.80, 5.20) 5.90 (5.60, 6.30) 6.50 (6.23, 6.9…
#> 5 Sepal.Length Min, Max     4.3, 5.8          4.9, 7            4.9, 7.9        
#> 6 Sepal.Width  n            50                50                50              
#> 7 Sepal.Width  Mean (SD)    3.43 (0.38)       2.77 (0.31)       2.97 (0.32)     
#> 8 Sepal.Width  Median (IQR) 3.40 (3.20, 3.68) 2.80 (2.52, 3.00) 3.00 (2.80, 3.1…
#> 9 Sepal.Width  Min, Max     2.3, 4.4          2, 3.4            2.2, 3.8        
    continuous_table(df = iris, Petal.Length, Sepal.Length, digits = 1)
#> # A tibble: 9 × 3
#>   variable     scoring      value         
#>   <chr>        <chr>        <chr>         
#> 1 NA           NA           N = 150       
#> 2 Petal.Length n            150           
#> 3 Petal.Length Mean (SD)    3.8 (1.8)     
#> 4 Petal.Length Median (IQR) 4.3 (1.6, 5.1)
#> 5 Petal.Length Min, Max     1, 6.9        
#> 6 Sepal.Length n            150           
#> 7 Sepal.Length Mean (SD)    5.8 (0.8)     
#> 8 Sepal.Length Median (IQR) 5.8 (5.1, 6.4)
#> 9 Sepal.Length Min, Max     4.3, 7.9