Produce a data frame to summarise counts of events
count_table.Rd
Takes a data frame of events and produces the number of events and number and percentage of individuals with at least one event.
Arguments
- df
Data Frame
- ...
Variables to be summarised
- ID
Variable that defines the individual identifier (e.g. screening number)
- N
a data frame with the group counts (typically produced using
dplyr::count()
)- group
optional, variable that defines the grouping
- accuracy
see details of
scales::percent()
- total
Logical indicating whether a total column should be created, default is
FALSE
- all
logical indicating whether a row summarising all events should be created, default is
FALSE
Examples
N <- dplyr::count(outcome, group, name = "N")
count_table(outcome_aes, serious, related, ID = screening, N = N,
group = group)
#> # A tibble: 5 × 6
#> variable scoring A_events A_individuals B_events B_individuals
#> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 NA NA N = 276 N = 276 N = 324 N = 324
#> 2 serious No 45 37 (13.4%) 45 36 (11.1%)
#> 3 serious Yes 4 4 (1.4%) 6 6 (1.9%)
#> 4 related No 47 39 (14.1%) 50 41 (12.7%)
#> 5 related Yes 2 2 (0.7%) 1 1 (0.3%)
N <- dplyr::count(outcome, name = "N")
count_table(outcome_aes, serious, related, ID = screening, N = N)
#> # A tibble: 5 × 4
#> variable scoring events individuals
#> <chr> <chr> <chr> <chr>
#> 1 NA NA N = 600 N = 600
#> 2 serious No 90 73 (12.2%)
#> 3 serious Yes 10 10 (1.7%)
#> 4 related No 97 80 (13.3%)
#> 5 related Yes 3 3 (0.5%)
count_table(outcome_aes, serious, ID = screening, N = N, all = TRUE)
#> # A tibble: 4 × 4
#> variable scoring events individuals
#> <chr> <chr> <chr> <chr>
#> 1 NA NA N = 600 N = 600
#> 2 All n 100 82 (13.7%)
#> 3 serious No 90 73 (12.2%)
#> 4 serious Yes 10 10 (1.7%)