Produce a data frame to summarise discrete variables
discrete_table.Rd
Takes a data frame and produces the number and percentage for discrete variables.
Usage
discrete_table(
df = .,
...,
group,
time,
total = TRUE,
n = FALSE,
missing = "Missing",
accuracy = 0.1,
drop.levels = FALSE,
condense = FALSE
)
Arguments
- df
Data Frame
- ...
Variables to be summarised
- group
Optional variable that defines the grouping
- time
Optional variable for repeated measures (currently must me used with group)
- total
Logical indicating whether a total column should be created
- n
Logical indicating whether percentages should be out of n (
n = TRUE
) or N (n = FALSE
)- missing
String determining what missing data will be called (if
n = TRUE
). Default is "Missing".- accuracy
see details of
scales::label_percent()
- drop.levels
logical indicating whether unused levels in the factors should be dropped. Default is
FALSE
.- condense
condense = TRUE
is deprecated, usecondense()
instead.
Examples
discrete_table(outcome, sex, group = group)
#> # A tibble: 5 × 5
#> variable scoring A B Total
#> <chr> <chr> <chr> <chr> <chr>
#> 1 NA NA N = 276 N = 324 N = 600
#> 2 sex Female 144 (52.2%) 159 (49.1%) 303 (50.5%)
#> 3 sex Male 129 (46.7%) 162 (50.0%) 291 (48.5%)
#> 4 sex Prefer not to specify 0 (0.0%) 0 (0.0%) 0 (0.0%)
#> 5 sex Missing 3 (1.1%) 3 (0.9%) 6 (1.0%)
discrete_table(outcome, sex, drop.levels = TRUE)
#> # A tibble: 4 × 3
#> variable scoring value
#> <chr> <chr> <chr>
#> 1 NA NA N = 600
#> 2 sex Female 303 (50.5%)
#> 3 sex Male 291 (48.5%)
#> 4 sex Missing 6 (1.0%)
discrete_table(outcome, sex, group = group, time = event_name, n = TRUE,
total = FALSE)
#> # A tibble: 13 × 5
#> event_name variable scoring A B
#> <chr> <chr> <chr> <chr> <chr>
#> 1 NA NA NA N = 92 N = 108
#> 2 Baseline sex n 91 107
#> 3 Baseline sex Female 48 (52.7%) 53 (49.5%)
#> 4 Baseline sex Male 43 (47.3%) 54 (50.5%)
#> 5 Baseline sex Prefer not to specify 0 (0.0%) 0 (0.0%)
#> 6 6 Weeks sex n 91 107
#> 7 6 Weeks sex Female 48 (52.7%) 53 (49.5%)
#> 8 6 Weeks sex Male 43 (47.3%) 54 (50.5%)
#> 9 6 Weeks sex Prefer not to specify 0 (0.0%) 0 (0.0%)
#> 10 12 Weeks sex n 91 107
#> 11 12 Weeks sex Female 48 (52.7%) 53 (49.5%)
#> 12 12 Weeks sex Male 43 (47.3%) 54 (50.5%)
#> 13 12 Weeks sex Prefer not to specify 0 (0.0%) 0 (0.0%)