Skip to contents

Takes a dataframe and produces the number and percentage for discrete variables.

Usage

discrete_table(
  df = .,
  ...,
  group = .,
  time = .,
  total = TRUE,
  n = FALSE,
  missing = "Missing",
  accuracy = 0.1,
  condense = FALSE
)

Arguments

df

Data Frame

...

Variables to be summarised

group

Optional variable that defines the grouping

time

Optional variable for repeated measures (currenlty must me used with group)

total

Logical indicating whether a total column should be created

n

Logical indicating whether percentages should be out of n (n = TRUE) or N (n = FALSE)

missing

String determining what missing data will be called (if n = TRUE). Default is "Missing".

accuracy

see details of scales::percent

condense

should the variable and scoring columns in the output be condensed to one column?

Value

A tibble data frame summarising the data

Examples

    library(ggplot2) # for the data
    discrete_table(df = mpg, drv, group = manufacturer)
#> # A tibble: 4 × 18
#>   variable scoring Total       audi    chevrolet dodge ford  honda hyundai jeep 
#>   <chr>    <chr>   <chr>       <chr>   <chr>     <chr> <chr> <chr> <chr>   <chr>
#> 1 NA       NA      N = 234     N = 18  N = 19    N = … N = … N = 9 N = 14  N = 8
#> 2 drv      4       103 (44.0%) 11 (61… 4 (21.1%) 26 (… 13 (… 0 (0… 0 (0.0… 8 (1…
#> 3 drv      f       106 (45.3%) 7 (38.… 5 (26.3%) 11 (… 0 (0… 9 (1… 14 (10… 0 (0…
#> 4 drv      r       25 (10.7%)  0 (0.0… 10 (52.6… 0 (0… 12 (… 0 (0… 0 (0.0… 0 (0…
#> # ℹ 8 more variables: `land rover` <chr>, lincoln <chr>, mercury <chr>,
#> #   nissan <chr>, pontiac <chr>, subaru <chr>, toyota <chr>, volkswagen <chr>
    discrete_table(df = mpg, drv)
#> # A tibble: 4 × 3
#>   variable scoring value      
#>   <chr>    <chr>   <chr>      
#> 1 NA       NA      N = 234    
#> 2 drv      4       103 (44.0%)
#> 3 drv      f       106 (45.3%)
#> 4 drv      r       25 (10.7%)